AutoUniMo

Automotive Production Engineering Unified Perspective based on Data Mining Methods and Virtual Factory Model

First Scientific Seminar - abstracts

 

Energy efficiency measurements – Marek Drewniak

Increasing need for money savings and cost reduction in industrial facilities caused greater necessity to use techniques, which would measure and evaluate energy efficiency of production stands. Information that can be provided by such analysis may not only be used to optimize energy consumption but also can support diagnosis and provide data useful for technologists and maintenance services by detecting anomalies in work of devices.
A model of system that was presented during the presentation is capable of measuring and evaluating energy efficiency of a production stand, which meets several assumed conditions. First section describes existing and implemented solution. For real assembly stand, methods for processing of historical data (post-processing) were introduced, along with sample statistical mechanisms to obtain indicators defining long-term production.  In the second, conceptual part, advanced analytical techniques were described. Mechanisms and terms are related to area of Big Data, data mining and machine learning. Such methods used for energy efficiency assessment can be used for self-learning of a system and in final effect, to its adaptation to variable work modes of a production stand.

Information exchange in production management systems – Lukasz Huczala

Information is processed data which provides value for an action. It means that megabytes of database tables or data files sent with the highest speed communication protocol can have less value for a business user or application than one byte result sent by an email.
For Business-To-Business and Business-To-Enterprise solutions the point of gravity is not data anymore but information. Functionality, openness, flexibility, security and unified communication layer are the characteristics which go first here. The data which is exchanged at this level must be transparent for many different systems and applications. The system has to able to communicate in the Internet environment, using standard protocols which are satisfactory fast but most of all secure.
Efficient data exchange interfaces, or rather we should say information exchange interfaces, produce transparent data together with a proper context. By the context we should understand all instruments which help to understand the data by all communication partners the same way. That can be meta-data information describing data type, functionality, structure and relations within dataset but also procedures allowing for the data processing. The model of data and procedures which should be accessible in manufacturing environment is defined in ISA95 standard.
Service-Oriented Architecture is presented as a methodology for the standard implementation in production management systems. Open Data protocol is introduced as a flexible and standardized data exchange technology that extends SOA data model and context layer.

OPC UA on PLC Level – The PLCopen Information Model – Banerjee Suprateek

OPC UA is a SOA (service oriented architecture) based communication standard developed by the OPC Foundation, specifically for industrial applications, from factory floor devices to enterprise applications. The biggest advantage that OPC UA provides is its interoperability and flexibility in addition to the security considerations that it offers which are necessary for effective communication in an industrial automation environment. It provides the information in the form of an address space model. Data and information can be made available with the help of services outlined by the standard. The information exchange takes place in a client-server architecture where clients developed in accordance with the OPC UA standard communicate with OPC UA servers which hold data and information in a pre-defined address space.  The PLCopen standard is based on the world wide IEC 61131-3 programming standard, which specifies various programming languages and a software model which can be used to program control systems. OPC Foundation and PLCopen have combined their technologies to form a uniform manufacturer-independent information and communication architecture. The objective was to increase the reusability of controller and visualization modules and their communication thereby increasing the efficiency of the engineering processes. The entire software model defined by IEC 61131-3 has been implemented within the OPC UA address space model in accordance with the common specification defined by both of these organizations. The PLCopen information model has been discussed in this presentation along with the benefits of the same.

Database architecture and data model for flexible manufacturing software solution and convenient information exchange – Szymon Ziemek

The biggest challenge today is to allow enterprises and customers speak the same language, which means reducing the information exchange time and complexity for this process. It is very important that each side can quickly understand the information that is received. We need components to build a complete system, which can be easy to understand and to communicate.
ANSI/ISA-95 is the standard, which provides complete, comprehensive and easy to exchange data model. Big advantage of ISA-95 is its consistent data description scheme. It provides one common data model for all of the possible functionality that may be needed in enterprises. It also divides enterprise scheme to some levels and defines a group of activities for each of them. Enterprises can follow this model to ensure data consistency not only within enterprise but even in a network of companies.
On the other hand, enterprises should be prepared for implementing and using this data model. Database is central and most critical point of most of the manufacturing systems. Many queries, millions of data rows, big amount of information – it is the big challenge to provide good performance and convenient data model together. The most important choice which should be done is to select proper database model and also database architecture. With all database models, the most popular models can be selected and considered, but not each of them can be used as a base for ANSI/ISA-95. The aim is to analyze the possibility of applying selected database model and architecture that support the flexibility, performance and convenience that is required by contemporary systems.

Energieplanung im Karosseriebau mit dem Methods-Energy Measurement (MEM) Ansatz  – Martin Bornschlegl

Die Reduzierung der Energiekosten von Fertigungstechnologien ist eine wichtige und aktuelle Zielstellung von Betriebsleitern in der Automobilindustrie. Auf Grund des hohen Automatisierungsgrades ist der Karosseriebau, neben der Lackiererei, der Hauptverbraucher innerhalb der Fahrzeugproduktion. Um den Energiebedarf reduzieren zu können, werden viele Ansätze und Maßnahmen erarbeitet und implementiert, nachdem die Produktionsanlagen bereits installiert sind. Allerdings sollte bereits in der frühen Planungsphase eine Betrachtung des Energiebedarfs erfolgen um somit ein Minimum der Lebenszeitkosten zu erreichen. Zur Bestimmung des Energiebedarfs in dieser Phase, ist ein geeignetes Prognoseverfahren notwendig, welches den Umstand berücksichtigt, dass zu diesem Zeitpunkt die genauen Prozessabläufe und -daten noch nicht bekannt sind.
In dieser Präsentation wird aufgezeigt, wie die zukünftigen Energiebedarfe von Fertigungsanalgen mittels des Methods-Energy Measurement (MEM) Verfahrens bestimmt werden können. Basierend auf den Bedürfnissen der Produktionsplaner, erfolgt eine Charakterisierung der Herausforderungen und Anforderungen an den MEM Ansatz. Zusätzlich wird das modulare Baukastenkonzept der Basisenergieeinheiten ei und das Vorgehen zur Bestimmung der Energiewerte vorgestellt. Zur einfacheren Ermittlung der Energiebedarfe von komplexen Fertigungszellen werden Technologiestrukturpläne (TSP) definiert und erstellt. Aus den Daten dieser TSP erfolgt abschließend eine Erzeugung von standardisierten Ressourcen Performance Indikatoren (RPI), welche sowohl Produktionsplaner als auch Entscheidungsträgern bei der Bewertung von Alternativen unterstützen.
Der MEM Ansatz ermöglicht somit eine frühzeitige Abschätzung des Energiebedarfs von Fertigungstechnologien im Karosseriebau und verhilft zu einer höheren Transparenz. Dadurch können nachhaltige Lösung identifiziert werden um dadurch die Rentabilität der Fabrik langfristig zu erhöhen.

Energieeffizienz in automatisierten Produktionen – Arno Steinbinder

Durch steigende Energiepreise und ein immer größer werdendes Bewusstsein für Umweltschutz in der Gesellschaft erhöht sich der Druck auf die Industriebetriebe Maßnahmen zu ergreifen, um die eingesetzten Ressourcen effizienter zu nutzen. Zu diesen Ressourcen gehört auch Energie. Der Energieverbrauch ist speziell bei automatisierten Produktionen einer der Hauptfabrikkostentreiber.
In diesem Forschungsprojekt wurde der Karosseriebau, als ein Gewerk mit ca. 97 % Automatisierungsgrad, ausgewählt, um eine Möglichkeit zu entwickeln die Energieeffizienz zu steigern. Der Fokus lag dabei auf dem Energiebedarf in der produktionsfreien Zeit. Die hier benötigte Energie erzeugt keinen Mehrwert für die Firma und ist somit nicht wertschöpfend. In der Präsentation wird auf die verschiedenen Faktoren hingewiesen, welche den späteren Energiebedarf beeinflussen. Durch die Berücksichtigung von energiesparender Komponenten in der Planungsphase, kann ein großer Teil des Energiebedarfs in der produktionsfreien Zeit eingespart werden.
Ein erster Test zeigt, dass über zwei Drittel des Energiebedarfs an einem Durchschnittswochenende eingespart werden können. Zur Vorbereitung waren noch viele manuelle Tätigkeiten notwendig, allerdings konnten somit deutlich die Gesamtenergiekosten einer Produktion reduziert werden. Aus diesem Grund gilt es die Erfahrung aus dem Versuch zu nutzen um eine dauerhafte und automatisierte Reduzierung des Energiebedarfs zu realisieren.

Development of a guideline for the energy consumption and the choice of equipment in electronics manufacturing in the automotive industry – Sonja Waechter

The increasing competition between companies and the growing need for an environmentally friendly production make a resource-saving and energy-efficient production indispensable. For this purpose there is an enormous saving potential in many companies.
A prerequisite is of course the use of low power consuming equipment. Most of the companies still pay not enough attention to the energy consumption and thus also to the resulting high operating costs. By manufacturing with low energy consumption, not only the operating costs are reduced, but also an essential contribution to protect the environment is made. But choosing the right equipment is not always easy, as there are no uniform regulations for the manufacturer information on energy consumption. This situation can be improved by appropriate specifications from the customer. In addition to the appropriate facility also the correct operation mode is a major role. This is based on the implementation of an appropriate monitoring of consumption to ensure the accuracy of the manufacturer's instructions and be able to quickly recognize and utilize a saving potential. Through the introduction of an energy management a permanently low consumption and a continuous improvement can be achieved.

Introduction to the Digital Factory of the Future – Jakub Piekarz

Constantly increasing costs of production as well as the pressures on savings force companies to search a new ways of optimization. While the topic of energy efficiency has long been implemented, the problem of inheritance of the data is relatively fresh.
Nowadays most of the data created during the automotive project is lost after start of the production phase. It was the natural way of things in the enterprise, there was no need to hold all the data in the archive. With an increasing pressure on savings, engineers began to look for a new areas in which they could make optimization; that is why the Digital Factory of the Future topic is taken into consideration. If we will be able to collect all the data specific for every phase of the project and store it in flexible format, we will create the possibility to use it in the future. With the help of the historical data not only the design part, but also live time activities like the accident prevention processes can be significantly improved. Instead of learning from mistakes, we can spread the knowledge to every department immediately.  Through working on the topic of Digital Factory of The Future, we can provide constantly growing know-how database the value of which is priceless.